Morphology of astroglial cells is controlled by beta-adrenergic receptors

نویسندگان

  • W Shain
  • D S Forman
  • V Madelian
  • J N Turner
چکیده

Astroglial cells in vivo and in vitro respond to hormones, growth factors, and neurotransmitters by changing from an epithelial-like to stellate morphology. We have studied the temporal relationship between receptor activation, second messenger mobilization, and morphological changes using LRM55 astroglial cells. Maintenance of an altered morphology required continuous beta-adrenergic receptor activation. These changes appeared to be mediated by cAMP since they were elicited by its analogue, dibutyryl cAMP, and by forskolin, a direct activator of adenylate cyclase. Changes in cell morphology may require a relatively small increase in intracellular cAMP, since receptor-stimulated changes in cAMP levels were transient and peaked approximately 5 min after receptor activation while changes in morphology took at least 30 min to reach a new steady state. Time-lapse videomicroscopy and high voltage electron microscopy indicated that receptor activation resulted in a sequence of morphological events. Time-lapse observations revealed the development and enlargement of openings through the cytoplasm associated with cytoplasmic withdrawal to the perinuclear region and process formation. Higher resolution high voltage electron microscopy indicated that the transition to a stellate morphology was preceded by the appearance of two distinct cytoplasmic domains. One contained an open network of filaments and organelles. The other was characterized by short broad cytoplasmic filaments. The first domain was similar to cytoplasm in control cells while the second was associated with the development and enlargement of openings through the cytoplasm and regions of obvious cytoplasmic withdrawal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

بررسی و مقایسه اثر 4 هفته تمرینات استقامتی با مصرف داروی فلوکستین بر روی افسردگی و گیرنده‌های بتا 1 آدرنرژیک قلبی در موش‌های نر افسرده نژاد ویستار رت

Background : Long-term exposure to anxiety and depression puts myocardium at risk of failure. Neurohormone Message caused be depression delivered to the heart by beta1 adrenoreceptor. The aim of this study was to survey and compare the effect of 4 weeks of endurance training with fluoxetine treatment on beta-adrenergic receptors in the male Wistar rat heart. Materials and Methods: This researc...

متن کامل

Spontaneous and beta-adrenergic receptor-mediated taurine release from astroglial cells are independent of manipulations of intracellular calcium.

Stimulation of beta-adrenergic receptors on LRM55 astroglial cells results in cAMP-dependent release of taurine. We have previously demonstrated that extracellular Ca2+ is not required for either spontaneous or receptor-mediated taurine release (Martin et al., 1988b). In the present series of experiments we investigated the relationship between changes in intracellular free Ca2+ ([Ca2+]i) and t...

متن کامل

Mechanism of Action of the Thyroid Hormone on the Heart

SUMMARY  The foliowing cardiac effects may be at­tributed to thyroxin:  1-Thyroxin augments all anaerobic pro­cesses in the body includ::ng the heart, and decreases the glycogen content of the heart ( 1, 2, 5, 27). The resistance of the heart to anoxia is increased in hyperthyroidism ( 25). 2- Thyroxin influences the cardiac weight and prevents cardiac atrophy (3, 8, 10, 11, 19, 20, 21, 30...

متن کامل

Effects of three beta adrenergic receptor agonists on growth performance, blood biochemical parameters, fatty acids composition and carnitine palmitoyltransferase I gene expression of rainbow trout, Oncorhynchus mykiss

Different beta 1 and 2 adrenergic receptors agonists might have various biological and physiological effects on fish species. An experiment was designed to study the effects of feeding ractopamine, terbutaline and metaproterenol; as beta1, beta2 and less selective beta2 adrenergic receptor agonists, respectively; on body weight gain, feed conversion rate, concentration of biochemical parameters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 105  شماره 

صفحات  -

تاریخ انتشار 1987